
© 2006 by IBM; made available under the EPL v1.0 | March 24, 2006

Best Practices for Programming
Eclipse and OSGi

BJ Hargrave IBM Lotus
Jeff McAffer IBM Rational Software

2 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Introduction

During the Eclipse 3.0 and OSGi R4 development cycles, OSGi and
Eclipse began to influence each others work

Eclipse 3.0 adopted the OSGi framework as the “footing” of the
Eclipse platform

OSGi R4 incorporated features to support important Eclipse use cases
This led to the OSGi R4 Framework specification of which Eclipse
Equinox is an implementation

The Equinox code is currently being used by OSGi as the framework
reference implementation for R4

3 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Overview

As a result of the incorporation of the OSGi framework into
Eclipse, there are several additional capabilities now available to
Eclipse plug-in writers that should be considered

Today we will look at two areas
Modularity – Techniques for sharing classes and resources
between bundles (aka. plug-in)

Collaboration – Techniques for inter bundle collaboration (which
build upon class sharing)

4 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Modularity

“(Desirable) property of a system, such that individual
components can be examined, modified and maintained
independently of the remainder of the system. Objective is that
changes in one part of a system should not lead to unexpected
behavior in other parts.”
www.maths.bath.ac.uk/~jap/MATH0015/glossary.html

We need to be able to share classes and resource between
bundles (modules) while supporting a proper level of modularity

Eclipse and OSGi offers two main ways of sharing
Require-Bundle
Import-Package

http://www.maths.bath.ac.uk/~jap/MATH0015/glossary.html

5 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Require-Bundle

Mechanism for a bundle to gain access to all the packages exported by
another bundle – “bulk import”

Advantages
Can be used for non-code dependencies: e.g. Help
Convenient shorthand for multiple imports
Joins split packages

Disadvantages
Tight coupling – can be brittle since it requires the presence of a specific
bundle
Split packages – Completeness, ordering, performance
Package shadowing
Unexpected signature changes

6 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Import-Package

Mechanism for a bundle to import specific packages

Advantages
Loose coupling – implementation independence

Arbitrary attributes allow sophisticated export matching

No issues with package splitting or shadowing – whole package
Disadvantages

More metadata to be created and maintained – each imported
package must be declared

Only useful for code (and resource) dependencies

Can’t be used for split packages

7 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Best Practices: Modularity

In general, Import-Package is recommended
PDE (or other tools) can help with metadata management for packages used
Loosest coupling

More opportunities for resolver to successfully resolve
Provides more information to management system

Require-Bundle used for complex scenarios
Refactoring bundles which results in splitting a package across more than one bundle
Have dependencies on a specific bundle and version

This could still be done with Import-Package
Also is a simple place to start when first modularizing legacy code

To some degree, the choice is a trade off that you must make
Simplicity vs. flexibility

8 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Collaboration

Modularization is powerful
Decouples elements

More flexible configurations

Dynamic behavior

Decoupled components need a way of interacting and cooperating
Our resolved bundles need to collaborate

Eclipse includes three mechanisms for inter bundle collaboration
Extension registry

Service registry

Declarative Services – builds upon the service registry

9 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Extension Registry
Extension Registry : declarative relationships between plug-ins
Extension Point : plug-ins open themselves for
configuration/extension
Extension : plug-in extends another by contributing an extension

“Plug-ins can contribute actionSets extensions that define actions with an id, a
label, an icon, and a class that implements the interface IActionDelegate. The UI
will present that label and icon to the user, and when the user clicks on the item,
the UI will instantiate the given action class, cast it to IActionDelegate, and call its
run() method.”

10 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Extension Registry

The extension registry provides a per extension point list of contributed
extensions

Aggregates all the extensions for the extension point
Provides a “private context” for the extension point and its extensions

Only the extension point will call the extension
Tightly coupled model

Each extension is bound to a specific extension point
Extension point are no longer bound to specific bundles

Declarative – plugin.xml
Lazy loading of extension class

Metadata enables registration and attribute interrogation
Life cycle scoped to resolved state of bundle
Lifecycle is highly dynamic

Extension may be published or unpublished at any time (after bundle resolved)
Lifecycle event notifications

No security to control
Which bundle can declare an extension point
Which bundle can contribute an extension

11 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Service Registry

The service registry is a publish/find/bind model
Public context

Single service registry (within a framework instance)
Loosely coupled model

Any bundle can bind to a service
API based – non declarative

Service can be published with key/value pair metadata
Eager loading of service class

Service object is published
Life cycle scoped to started state of bundle
Lifecycle is highly dynamic

Service may be published or unpublished at any time (after bundle started)
Lifecycle event notifications

Permissions to control whether a bundle can publish, find or bind to a
service

12 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Declarative Services

Declarative service model build upon service registry
Adds a declarative mechanism specifying

Provided service
References services

Simplified programming model
POJO with dependency injection and contextualized lookup

Can conceal dynamism of services from programmer
Lazy loading of service class
Lifecycle managed by central runtime
Interoperates with service registry

Vaguely similar to Spring but supports the dynamic component model of
OSGi and Eclipse

13 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Extensions Services
extension

point

implements

contributes

uses

= contract = consumer = provider

extension

consumer

implementsuses

binds

service

14 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Example: Event Listeners

Event listeners are connected to the event source

An event is fired and the event source must notify each event
listener

Event listeners can supply metadata describing interest in event,
for example:

Event subtypes of interest
Frequency of notification
etc.

15 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Extension Approach

Event source
Declaratively defines and exposes extension point (e.g. eventSource)
Defines the listener interface (e.g. IEventListener)

Listener
Implements IEventListener

Declaratively contributes extension for the eventSource extension point that defines
IEventListener class to run
Listener metadata

Event source extension point discovers each registered IEventListener
extension

When an event is fired, the event source
Evaluates the event against each listener extension’s metadata
Can then load and run the listener’s code to deliver the event

16 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Extension Approach

Event SourceEvent Source
ListenerListener

eventSourceeventSource

IEventListenerIEventListener

ExtensionExtension

ListenerImplListenerImpl

contributes

implements

instantiates

calls to notify

17 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Services Approach: Whiteboard

Event source
Defines the listener interface (e.g. IEventListener)

Listeners
Implements IEventListener

Registers an IEventListener instance as a service with
properties containing listener metadata

When an event is fired, event source
Finds all registered IEventListener services
Evaluates the event against each listener service’s metadata
Can then bind to and run the listener’s code to deliver the event

18 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Services Approach: Whiteboard

Event SourceEvent Source
ListenerListener

IEventListenerIEventListener

ListenerImplListenerImpl
implements

Service RegistryService Registry

finds

binds

instantiates
publishes

calls to notify

19 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Services Approach: Registration

Event source
Defines the event source interface (e.g. IEventSource)
Defines the listener interface (e.g. IEventListener)
Implements IEventSource

Registers an IEventSource instance as a service

Listeners
Implements IEventListener

Finds and binds to the IEventSource service
Registers an IEventListener instance with the IEventSource service along with
listener metadata

When an event is fired, event source
Evaluates the event against each listener’s metadata
Can then run the listener’s code to deliver the event

20 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Services Approach: Registration

Event SourceEvent Source
ListenerListener

IEventListenerIEventListener

ListenerImplListenerImpl
implements

Service RegistryService Registry

finds

binds

instantiates
publishes

IEventSourceIEventSource registers

calls to notify

21 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Declarative Services Approach: IoC Whiteboard

Event source
Defines the listener interface (e.g. IEventListener)
Declaratively defines component with a dynamic, 0..n cardinality, dependency injection
reference to IEventListener services

Listeners
Implements IEventListener

Declaratively defines component providing IEventListener service with listener
metadata

SCR will create and inject instance of IEventListener service into event source
component

When an event is fired, event source
Queries listener for metadata and evaluates the event against metadata
Can then run the listener’s code to deliver the event

22 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Declarative Services Approach: IoC Whiteboard

Event SourceEvent Source
ListenerListener

IEventListenerIEventListener

ListenerImplListenerImpl
implements

Service Component
Runtime

Service Component
Runtime

setter injection instantiates

calls to notify

23 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Discussion

In Extension and Service Registration approaches, the listener is able to
select the specific event source with which it’s listener will be registered

Names extension point of extension/binds to event source service
In the Service Whiteboard and Declarative Services, control is inverted
and the event source select the listener

Extension approach allows lazy loading of listener class
The Services approaches require eager loading of listener class
The Declarative Service with DI also requires eager loading but a
variation can be made which allows lazy loading at the “expense” of
using container API

Contextualized lookup

Injection of ServiceReference

24 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Compare and Contrast

Extensions
Private contract with specific consumer (extension point)
Can deliver data-only payload
Lazily loaded and run
Lifecycle scoped to resolved state of bundles

Services
Public contract
No data-only payload
Eager loading
Lifecycle scoped to started state of bundles

Declarative Services
Public contract
No data-only payload
Lazily loaded and run
Lifecycle scoped to started state of bundles

25 Eclipse/OSGi Best Practices | © 2006 by IBM; made available under the EPL v1.0

Best Practices: Collaboration

Extension Registry
Use when a tightly coupled relationship exists such as contributing UI
elements

Declarative Services
Use when providing a service usable by any consumer (loosely coupled
relationship) such as a data validation service
Use when substitutability of service providers and consumers is desired

Service Registry
Same as Declarative Services
But Declarative Services is preferred unless you have a complex need
outside scope of Declarative Service’s capabilities
Useful for highly dynamic service such as publication upon external event

	Best Practices for Programming Eclipse and OSGi
	Introduction
	Overview
	Modularity
	Require-Bundle
	Import-Package
	Best Practices: Modularity
	Collaboration
	Extension Registry
	Extension Registry
	Service Registry
	Declarative Services
	ExtensionsServices
	Extension Approach
	Extension Approach
	Services Approach: Whiteboard
	Services Approach: Whiteboard
	Services Approach: Registration
	Services Approach: Registration
	Declarative Services Approach: IoC Whiteboard
	Declarative Services Approach: IoC Whiteboard
	Discussion
	Compare and Contrast
	Best Practices: Collaboration

